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The low-temperature coarsening dynamics of a one-dimensional Ising model, with conserved magnetization
and subject to a small external driving force, is studied analytically in the limit where the volume fraction
m of the minority phase is small, and numerically for generalm. The mean domain sizeL(t) grows ast1/2 in
all cases, and the domain-size distribution for domains of one sign is very well described by the formPl( l )
}( l /L3)exp@2l(m)(l2/L2)#, which is exact for smallm ~and possibly for allm). The persistence exponent for
the minority phase has the value 3/2 form→0. @S1063-651X~96!03008-5#

PACS number~s!: 05.40.1j, 05.50.1q, 64.60.Cn, 75.40.Gb

I. INTRODUCTION

The field of phase-ordering dynamics is by now quite well
developed@1#. It deals with the approach to equilibrium of a
system quenched from a homogeneous high-temperature
phase into a two-phase region. Familiar examples are binary
alloys and binary liquids, which are described by a scalar
order parameter. Recent work has addressed also cases
where the order parameter symmetry is continuous rather
than discrete@1#. Especially interesting is the scaling regime
that emerges in the late stages of growth. For a scalar order
parameter, for example, the domain morphology is appar-
ently time independent if lengths are scaled to a single time-
dependent length scaleL(t), which represents the typical
‘‘domain size.’’ This implies that two-point correlation func-
tions depend on the spatial separationr of the points only
through the ratiour u/L(t).

By contrast, the coarsening dynamics of driven systems
has been much less studied. A physically relevant example,
indeed the motivation for the present work, is the phase sepa-
ration of a binary liquid under gravity. Numerical simula-
tions of a~physically less realistic! alloy model with gravity
suggest the existence of two growing length scales, parallel
and perpendicular to the field@2–4#, although it has proved
difficult to unambiguously extract the time dependence of
these length scales.

An independent field of study concerns the stationary
properties of these ‘‘driven diffusive systems’’@5#. Here we
focus on the nonstationary, coarsening dynamics, which, as
we have noted, has attracted relatively little attention thus
far. Ultimately, we would like to understand the coarsening
of binary liquids under weak gravity, including hydrody-
namic effects@6#, but as a first step we settle here for a less
ambitious goal. Specifically we study a one-dimensional
Ising model with conserved dynamics and a driving field
E, which favors transport of ‘‘up’’ spins to the right~and
‘‘down’’ spins to the left!. We work in the regime
T!E!J, whereT andJ are the temperature and exchange
coupling, respectively. We derive exact results in the limit
where one phase occupies a small volume fraction, and nu-
merical results for general volume fractions. The main re-
sults are aAt dependence for the mean domain size, and a
domain-size distribution for domains of one sign of the form
Pl( l )}( l /L

3)exp(2ll2/L2), whereL is the mean size of do-

mains of that sign. We also show that the recently introduced
@7# ‘‘persistence exponent’’u, which describes the fraction
f (t);t2u of spins of one phase that have not flipped up to
time t ~in a sense to be clarified below! is u53/2 for the
minority phase in the limit where that phase has a vanish-
ingly small volume fraction. These are the first analytical
results for the coarsening dynamics of this driven diffusive
system.

The paper is organized as follows. In Sec. II we define the
model. In Sec. III we discuss domain growth and dynamical
scaling in the model, while Sec. IV deals with the persistence
exponent. Section V concludes with a summary and discus-
sion of the results.

II. THE MODEL

The microscopic model we consider is a chain of Ising
spinsSi561 with nearest-neighbor coupling strengthJ. The
system evolves by nearest-neighbor spin-exchange dynam-
ics, with a driving forceE that favors motion of up spins to
the right over motion to the left. That is, the microscopic
processes are

1122 
 1212D54J2E ~ i!,

2211 
 2121D54J1E ~ ii !,

1121 
 1211D52E ~ iii !,

2122 
 2212D52E ~ iv!,

where the rate for a process from left to right is proportional
to (1/2)@12tanh(D/2T)#. We distinguish between the ‘‘for-
ward’’ and ‘‘backward’’ versions of the processes depicted
above by using⇀ and↽ to denote the process from left to
right and right to left, respectively.

We consider the regimeT!E!J. This is very different
from other studies, which have concentrated on the limit
J/T→0 @8#. The system possesses metastable states consist-
ing of long domains of parallel spins, separated by domain
walls. After a long time of order exp@(4J2E)/T#, a process of
type ~i⇀) takes place, i.e., a spin splits off from a domain.
Processes of type~ii⇀) are inhibited by a factor
exp(22E/T) relative to~i⇀), but even if they occur the sys-
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tem quickly relaxes back to the metastable state by the re-
verse process~ii↽!, since all the other possible processes are
endothermic. Once a process~i⇀) occurs, the system can
relax further by exothermic processes of the kind~iv⇀), so
that the up spin moves to the right, eventually meeting and
adhering to a domain wall; the system may also relax exo-
thermically by processes~iii⇀), so that a down spin moves
left, eventually meeting another domain wall. The motion of
these free spins is unidirectional, because the reverse pro-
cesses~iii↽! and ~iv↽! are inhibited by a factor of order
exp(2E/T).

The result of the free up spin moving to the right is for the
down domain through which the spin has traveled to have
moved bodily one step to the left; the result of a free down
spin moving to the left is for the up domain to the left of the
wall to take one step to the right. We may therefore map the
microscopic dynamics of the lattice of spins onto one for an
array of domains. The system then evolves by a domain of
up spins moving spontaneously to the right, or a domain of
down spins moving to the left. The rates for such processes
are independent of the domain size. This mapping is analo-
gous to a mapping by Majumdar and Huse@9# for the low-
temperature Kawasaki chain, corresponding to this model in
the opposite limitE50.

When domains are of size two spins or less, they can
vanish. The microscopic mechanism for this in the Ising spin
picture is series of events involving two random walkers that
may coalesce, which translates into rather complex transi-
tions in the domain representation. However, when the do-
mains are large, the details of this domain annihilation pro-
cess are not expected to be important, so we choose to study
a model where the simple domain-shifting dynamics applies
for domains down to size one, and removing a domain if its
size reduces to zero. Simulations of this simplified system
permitted much better statistics than would be possible with
the true, microscopic system, whilst still giving indistin-
guishable scaling behavior.

The algorithm used for simulation was the following:~i!
set up an array of alternating up and down domains;~ii ! pick
a domain at random;~iii ! if the domain is up, move to the
right ~i.e., reduce the size of its right neighbor by one, and
increase its left neighbor by one!, otherwise move to the left;
~iv! if one of the neighboring domains is of zero size then
remove it, merging its neighbors;~v! update the clock by
1/~number of domains!; ~vi! repeat steps~ii !–~vi!. By virtue
of step ~v!, the time is defined to be measured in units of
exp(4J2E)/T, and this convention is adopted throughout the
present paper.

III. DOMAIN GROWTH AND DYNAMICAL SCALING

A. Simulation results

Since the number of domains in the model can decrease
but not increase, the average domain size must increase
monotonically. In a finite system~with periodic boundary
conditions! the system will coarsen until there is only one up
domain and one down domain; this state will not be station-
ary, because the dynamics still permits both domain walls to
perform correlated random walks. There will be a wide re-
gime of time during which the average domain size is much

smaller than the system size, and the system might be ex-
pected to display dynamic scaling.

Simulations using the domain model described in the pre-
vious section were performed, using lattice sizes in the re-
gion 105–106 spins, for times up to 33104 and averaging
over several hundred samples. Random initial conditions,
where a spin has a probabilitym of being up and 12m of
being down, were used; similar results were found if an or-
dered initial state was prepared using alternating single up
spins and domains of (12m)/m down spins. The dynamics
conserves the magnetization, so the volume fractionm re-
mains unchanged. Several different random number genera-
tors were used, and the results checked for consistency; the
four-register shift generator of Ziff@10# was used for the runs
of highest statistics, once it had been established that it gave
results consistent with other generators.

Figure 1 shows the average domain density plotted, for
different volume fractionsm, as a function of timet on a
log-log scale. The straight lines all have gradient20.50.
Figure 2 shows a time-dependent effective exponent, defined
as the gradient of a line between successive points in Fig. 1,
plotted as a function of 1/ln(t); the results show that the data
appear to approach the value20.50 ast→`, though the

FIG. 2. The effective exponent for the decay of the domain wall
density.

FIG. 1. The average domain densityN(t) for four values of the
volume fractionm. The straight lines are plots of the asymptotic
prediction from Eq.~10!.

1154 54STEPHEN J. CORNELL AND ALAN J. BRAY



convergence is slower for larger values ofm. The character-
istic domain size therefore increases ast0.50.

Figure 3 is a scaling plot of the domain-size distribution
Pl( l ) ~defined as the number of domains of sizel per lattice
site! for a simulation withm50.5. The average domain size
L(t) is defined byL215( lPl( l ). The data show good col-
lapse to scaling, even for short times. Figure 4 shows the
same data plotted in the form ln@L3Pl(l)/l# versus (l /L)

2. The
linear behavior evident in the plot suggests scaling of the
form

Pl}
l

L3~ t !
exp$2l@ l /L~ t !#2%. ~1!

For the casemÞ0.5, the average sizes of up and down do-
mains differs by a factorm/(12m), but nevertheless the up
and down domain-size distributionsP1 and P2 are both
found to satisfy independently scaling of the form~1!.

Figure 5 shows the scaling of the equal-time two-point
correlation functionC(x,t)5^Si(t)Si1x(t)&. Although the
data appear to collapse to a scaling form, the approach ap-
pears slower than was the case forPl , suggesting that

Pl( l ) is a more natural quantity to describe the system. The
apparent simple form forPl suggests that the scaling state
might be very simple, for instance, there might be no corre-
lations between domains in the scaling limit. The structure
factor S(q) @the Fourier transform ofC(x)# for a system
consisting of uncorrelated domains may be shown to be@11#

S~q!5
4

Lq2
12uP̃l~q!u2

u11 P̃l~q!u2
, ~2!

where P̃l(q) is the Fourier transform ofPl . The inverse
Fourier transform of~2!, whereP̃l was calculated by assum-
ing the simple form~1!, is plotted in Fig. 5 for comparison.
The discrepancy with the simulation data shows that strong
correlations need to be taken into account in this system,
even though simulations measured only;3–5 % correla-
tions between the sizes of neighboring domains.

B. Solution for domain density assuming scaling

The numerical data suggest that the scaling function for
the domain-size distribution is the same for minority and
majority domains, and is independent ofm. Using this as an
assumption, we can calculate the average domain size. The
number of domain walls changes by a domain of size one
shrinking to nothing, and so we expect thatP6( l6); l6 for
l6→0. We therefore assume a scaling form

P6~ l6 ,t !5a6

l6
L6
3 ~ t !

FS l6
L6~ t ! D , ~3!

wherea6 is chosen so thatF(0)51, andF8(0)50. The
rate at which up domains vanish isP1(1), which approaches
]P1 /] l1 in the continuum limit. Since each domain vanish-
ing event removes two domain walls, the rate of decay of the
numberN(t) of domain walls per site is

2
dN

dt
52S ]P1

] l1
U
l150

1
]P2

] l2
U
l250

D 52S a1

L1
3 1

a2

L2
3 D .

~4!

FIG. 3. Scaling plot of the domain-size distribution for volume
fractionm50.5.

FIG. 4. Fit of the data in Fig. 3 to the form~1!.

FIG. 5. Scaling plot of the equal-time spin-spin correlation func-
tion for m50.5. The prediction assuming uncorrelated domains is
shown for comparison.

54 1155DOMAIN GROWTH IN A ONE-DIMENSIONAL DRIVEN . . .



The domain-size distribution is normalized to the density of
domains, and there are the same number of up as down do-
mains, so

N/25E
0

`

P1~ l1!dl15
a1 f 1
L1

, ~5!

N/25E
0

`

P1~ l2!dl25
a2 f 1
L2

, ~6!

where f 1[*0
`xF(x)dx. The densities of up and down spins

are

m5E
0

`

l1P1~ l1!dl15a1 f 2 , ~7!

12m5E
0

`

l2P2~ l2!dl25a2 f 2 , ~8!

where f 2[*0
`x2F(x)dx. Substituting forL6 and a6 from

~5!–~8! into ~4!, and integrating, we find the following as-
ymptotic result ast→`:

N~ t !5H 2 f 1
3

f 2
2t@m221~12m!22# J

1/2

. ~9!

For the particular caseF(x)5exp(2lx2), suggested by
the data, we havef 151/(2l), f 25p1/2l23/2/4, and

N~ t !5
2

$pt@m221~12m!22#%1/2
. ~10!

The straight lines in Fig. 1 are, in fact, plots of Eq.~10! for
appropriate values ofm. The excellent agreement of the data
with the prediction confirms both the predictedm depen-
dence and also the simple form forF(x).

C. Solution for P6 in the limit µ˜0

The simulations are in excellent agreement with the scal-
ing hypothesis, and with the simple form for the scaling
function ~1!. We would like to have anab initio explanation
for these results. Unfortunately, we were only able to solve
the dynamics in the ‘‘off-critical’’ limit m→0 ~or, equiva-
lently, m→1).

In the limit m→0, it is necessary only to consider the
motion of the minority spins, i.e., the motion of the majority
domains. This is because the size of each domain performs a
random walk until it either dies~shrinks to zero size! or
coalesces with the nearest domain of the same type. To coa-
lesce with another domain, the intervening domain of the
opposite type has to shrink to zero size. The time scale for
the vanishing of majority domains will therefore be much
longer ~by a factor;m22) than for minority domains. The
dynamics will therefore progress primarily by minority do-
mains shrinking to zero size, and never coalescing, whereas
the majority domains’ sizes only change appreciably due to
coalescence.

Consider a particular minority domain containingn up
spins at timet. In the limit where coalescence is forbidden,
the domain changes size by~a! an up spin arriving from the

next domain to the left or~b! an up spin splitting off the
domain, and moving to the next domain on the right. It is
also possible for a down spin to move from the right to the
left of the domain, but this does not change the value ofn.
Notice that the dynamics is independent of where the neigh-
boring domains are, whether they are vanishing or coalesc-
ing. Once the size of the domain reduces to zero, the domain
ceases to exist. The master equation for the probability
P(n,t) of the size beingn at time t is

dP~n,t !

dt
5P~n11,t !1P~n21,t !22P~n,t ! ~11!

for n>1, with P(0,t)50. In the continuum limit this master
equation approaches the diffusion equation, whose solution
with P(n,t50)5d(n2n0) is

P~n,t !5~4pt !21/2H expF2
~n2n0!

2

4t G2expF2
~n1n0!

2

4t G J ,
~12!

5~pt !21/2sinhS nn02t DexpS 2
n2

4t
2
n0
2

4t D . ~13!

In the scaling limitt→`, n→`, with n/At fixed, this re-
duces to

P~n,t !→
nn0

2Apt3
expS 2

n2

4t D . ~14!

In a random initial state, the number of domains of sizen0
per lattice site is (12m)2mn0. The up domain size distribu-
tion at a timet in the scaling limit is therefore

P1~ l1!5(
n0

~12m!2mn0P~ l1 ,t ! ~15!

→
m l1

2Apt3
expS 2

l1
2

4t D , ~16!

which is of the form~1!, with L52t1/2. The total domain
density~twice the density of up domains! is

N~ t !5E
0

`

P1~ l1!dl15
2m

Apt
, ~17!

which approaches~10! in the limit m→0.
We may calculate the size distribution of the majority

domains from the probability that a given region contain no
domain walls. Consider a region ofM lattice sites containing
n minority spins; these spins need not necessarily all belong
to the same domain. Then the number of minority spins
changes by spins entering the region at the left and coalesc-
ing with the leftmost domain wall in the region, and spins
splitting off the rightmost domain wall. Oncen reduces to
zero, however, any spins entering the region from the left
will simply pass through the region, and it will remain
empty. We have again assumed the limitm→0, by not al-
lowing for any domains to move out of the region or to
coalesce with domains outside the region.
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Under these conditions, the probabilityPM(n,t) obeys a
master equation of the form~11!, whose solution with
n5mM at t50 is

PM~n,t !5~4pt !21/2H expF2
~n2mM !2

4t G
2expF2

~n1mM !2

4t G J . ~18!

The probabilityPE of the regionM being empty is then

PE~M ,t !512E
0

`

PM~n,t !dn ~19!

512~4pt !21/2E
2mM

mM

expS 2
u2

4t Ddu. ~20!

Consider now a region ofm sites, sitting inside a domain of
size l sites. The number of positions that it can occupy
within the region is (l2m)Q( l2m), whereQ is the Heavi-
side function. The probability that a randomly chosen inter-
val m lies within a domain of size in the rangel to l1dl is
therefore (l2m)Q( l2m)Pl( l )dl, so the probability that a
region of sizem contains no domain walls is

PE~m!5E
m

`

~ l2m!Pl~ l !dl. ~21!

Differentiating twice, we havePE
9 (m)5Pl(m).

The result for the distribution of majority domains is
therefore

P2~ l2!5
]2PE~M !

]M2 U
M5 l2

~22!

5
m3l2

2Apt3
expS 2

m2l2
2

4t D , ~23!

which is of the form~1! with L25L1 /m. This shows that
the calculation is only valid to lowest order inm, since the
conservation of magnetization implies thatL2 /L1

5(12m)/m.

IV. PERSISTENCE EXPONENT

It was recently found that, in a one-dimensional~1D!
Ising model evolving at zero temperature from a disordered
state under Glauber dynamics, the probability that a given
spin has never flipped up to timet decays ast2u @7#. The
value of the persistence exponentu depends upon the mag-
netization, and whether the spin is in the majority or minority
phase. The dynamics for a spin in a phase with volume frac-
tion m is the same as for aq-state Potts model with symmet-
ric initial condition, with q51/m @12#, leading to the result
thatu takes values in the range 0–1 asm decreases from 1 to
0, with u53/8 for m51/2 @13#.

For a 1D driven diffusive system, there are two kinds of
persistence that may be considered. The first concerns the
probability that a spin in the microscopic Ising representation
has never changed its value. Whenever a domain wall emits
a spin, that spin moves rapidly through a domain, causing
each of the spins in that domain to flip twice. Since this spin
emission is a Markov process, the probability that a given
spin has never flipped decays exponentially.

A more interesting kind of persistence to investigate is the
probability that a given spin has never belonged to another
stabledomain. That is, we discount the rapid flipping due to
spin motion through a domain, and consider only the case
where an entire domain has migrated towards the site in
question. This kind of coarse graining in time would also be
necessary when studying the Glauber-Ising model at low but
nonzero temperatures, where short-lived thermally activated
flipping of spins within the interiors of domains occurs, in
order to recover the true zero-temperature persistence behav-
ior.

A. Analytical results for µ˜0

Let us consider a test site initially within a minority do-
main, a distancen1 sites from the left domain wall andn2
sites from the right wall. We definen1 and n2 such that a
spin in a domain of size unity has (n1 ,n2)5(1,1). The dy-
namics causes the domain walls to wander stochastically,
and eventually one of the walls will cross the test site; i.e.,
the test site will have flipped.

We shall assume that this domain does not coalesce with
another domain before one of the domain walls reaches the
test site. This assumption will certainly be valid in the limit
m→0. Then the three processes that cause the domain walls
to move are~i! an up spin joins onto the left-hand edge,
(n1 ,n2)→(n111,n2); ~ii ! an up spin splits off the right-hand
edge, (n1 ,n2)→(n1 ,n221); ~iii ! a down spin splits off the
right-hand edge and moves through the domain to the left-
hand edge, (n1 ,n2)→(n121,n211). The master equation
for the joint probabilityP(n1 ,n2 ,t) is then

dP~n1 ,n2 ,t !

dt
5P~n121,n2!1P~n111,n221! ~24!

1P~n1 ,n211!23P~n1 ,n2!,
~25!

which becomes, in the continuum limitn1→x1, n2→x2,

]P~x1 ,x2 ,t !

]t
5H ]2

]x1
2 1

]2

]x2
2 2

]2

]x1]x2
J P. ~26!

Making the change of variable

x5x11x2 ~27!

y5
1

A3
~x12x2!, ~28!

Eq. ~26! becomes

]P~x,y,t !

]t
5H ]2

]x2
1

]2

]y2 J P. ~29!
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When either of the domain walls reaches the test site, the test
site flips. Therefore, if we wantP to represent the condi-
tional probability that the site has not flipped, we must solve
Eq. ~26! with boundary conditionP50 along x150 and
x250. This corresponds to solving the diffusion Eq.~29!
with boundary conditionP50 along the linesy56x/A3,
for the regionx>yA3, x>2yA3—that is, in a wedge of
anglep/3 with absorbing boundaries.

The diffusion equation is readily solved in a wedge of
anglec with absorbing boundaries, and it is known that the
survival probability for a random walker under such condi-
tions decays ast2p/2c @14#. After transforming Eq.~29! into
polar coordinatesr andu, where

r5~x21y2!1/2, ~30!

u5f1p/6, ~31!

tanf5y/x, ~32!

we need to solve the diffusion equation for the region
0<u<p/3, with P50 on u50 andu5p/3. The appropri-
ate solution, starting fromr5r 0, u5u0 is

P~r ,u,t !5
3

p (
m

E
0

`

dle2ltsin~3mu!sin~3mu0!

3J3m~r 0l
1/2!J3m~rl1/2! ~33!

5
3

pt (m sin~3mu!sin~3mu0!

3I 3mS rr 02t DexpS 2
r 0
21r 2

4t D , ~34!

where we have used Eq.~6.615! of @15#. To find the
persistence probability, we need to evaluatePP(t)
5*0

`rdr*0
p/3duP. Performing the integrals@15#, and taking

the limit t→` ~where the dominant contribution comes from
the termm51 in the sum! we find

PP→
1

2Ap
sin~3u0!S r 024t D

3/2

. ~35!

On substituting for the initial conditions in terms of
x5n1

01n2
0, y5(n1

02n2
0)/A3, Eq. ~35! reduces to

PP(t)5(1/4Ap)n1
0n2

0(n1
01n2

0)t23/2.
In order to calculate the persistence probability, we need

to average over the possible values ofn1
0 andn2

0. The prob-
ability in the initial state of a given ‘‘up’’ spin having pre-
cisely n1

021 consecutive up neighbors to its left is

(12m)mn1
0
21, so the probability of an initial configuration

(n1
0 ,n2

0) is (12m)2mn1
0
1n2

0
22. Summing overn1

0>1 and
n2
0>1 gives the final result,

PP~ t !5
1

2Apt3
11m

~12m!3
. ~36!

One might attempt to perform a similar calculation for a
site within a majority domain. Here, however, it is important

to take account not only of the fact that the walls of the
domain can move, but also that the neighboring domains can
vanish before the test spin has flipped. Contributions from
domains that have coalesced will therefore be important, and
the necessity to include information about domain-domain
correlations makes the calculation extremely complicated, if
not intractable.

B. Simulation results

The persistence probability for both majority and minority
spins was measured for a range of values ofm. While the
measured values of the exponenta for the minority domains
was found to be close to 1.5 form small, form50.5 there
appeared to be some evidence that the asymptotic behavior
was governed by a different exponent. However, the slow
onset of the asymptotic regime for intermediate values of
m, together with the large value of the exponent (.1, com-
pared with<1 for the Glauber case@13#!, led to unavoidably
poor statistics in the asymptotic regime, and hence it was not
possible to establish reliable values for the exponent.

Figure 6 shows a plot ofPP(t)t
3/2 against time for minor-

ity spins, for m50.01. For comparison, the constant
('0.2936) predicted by Eq.~36! is also shown. There is
reasonable agreement of the simulations with the
independent-domain prediction, suggesting that it is a good
approximation for smallm, for the time regime measured.
We interpret the deviation from the constant at longer times
as more likely to be due to statistics than a true systematic
effect. Similar data form50.1 are shown, and deviations
from the constant predicted by~36! ('0.4257) are already
quite marked.

The effective persistence exponentd(lnPP)/d(lnt) for mi-
nority spins is plotted as a function of 1/lnt in Fig. 7, for
several values ofm. The purpose of this plot is to investigate
whether there are any underlying trends in the exponent.
When a function of the formf (t)}ta(lnt)b is plotted on a
graph of this kind, the curve approaches thef axis linearly
with gradientb and intercepta. The behavior for data that
converge asymptotically to a power law is for the slope of
such a plot to level off to zero in the asymptotic regime. For
small values ofm, the exponent seems to have settled down

FIG. 6. Bias plot for the persistence probability of minority
spins.
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to a value close to21.5. However, form close to 0.5 there
still appears to be some trend in the effective exponent, sug-
gesting that the asymptotic regime has not been reached.
Only for m50.5 is there strong evidence that the data con-
verge to an exponent different from21.5. Improved statis-
tics and longer times would be needed to give an unequivo-
cal conclusion, but we would not be able to do this using our
current techniques since each set of data required approxi-
mately 1 week of CPU time.

The results for the persistence of the majority species are
even more problematic, because formÞ0.5 too few spins
were found to have to flipped for the asymptotic regime to
have been reached.

The deviations from the free-domain picture must be due
to the fact that some of the minority domains coalesce. It is
possible to estimate the number of minority domains that
coalesce from the rate at which majority domains vanish.
From Eq.~4!, using~5!–~8!, we find

2
dN1

dt
5

~12m!21m2

m2

]P2

] l2
U
l250

, ~37!

whereN15N/2 is the number of minority~up! domains per
site. Integrating, we find

E
t

`

dt
]P2

] l2
U
l250

5
m2

~12m!21m2N1~ t !. ~38!

The term on the left-hand side is the total number of majority
domains that vanish between timet and infinity, which is
equal to the number of minority-domain coalescences. Some
domains may coalesce more than once, so this is an upper
bound on the number of minority domains that coalesce at
least once after timet. The fraction of minority domains that
coalesce after time t is therefore less thanm2/
@m21(12m)2#, which vanishes asm2 for smallm.

Measurements from the numerical simulations confirmed
the picture that the fraction of domains that coalesce is small
for m small. Nevertheless, it is found that the dominant con-
tribution to persistence in the long-time limit comes from
spins in domains that have coalesced, thus explaining the
deviations from the free-domain approximation.

V. SUMMARY

The low-temperature coarsening dynamics of a driven dif-
fusive system—the 1D Ising model with a driving forceE
satisfyingT!E!J—has been studied by a combination of
analytical and numerical techniques. Compelling evidence
for a mean domain size growing ast1/2, and a domain-size
distribution of the form~1!, has been presented. These results
are exact in the limit where one phase occupies a vanishingly
small volume fractionm. In the same limit, the persistence
exponent for the minority phase isu53/2. The limit of zero
volume fraction was studied by Lifshitz and Slyozov@16# to
predict the growth exponent (51/3) for the case without
driving force in general dimension, and it is hoped that the
approach of the present paper also might be usefully ex-
tended to higher dimensions.

The random-walk character of the domain dynamics sug-
gestst1/2 growth generally, and this is borne out by the simu-
lation results~Figs. 1 and 2!. The simulations also lend
strong support~Figs. 3 and 4! to the scaling distribution~1!
for generalm. By contrast, the value ofu away from the
small-m limit is difficult to determine numerically, due to
slow convergence to the asymptotic regime~Fig. 7!. For
m50.5, however, the results seem to be inconsistent with
u53/2, suggesting that the exponentu may depend continu-
ously on m, as is the case for the 1D Ising model with
Glauber dynamics@12#.

In the absence of the bias fieldE, the kinetics reduce to
conventional Kawasaki dynamics, for which the mean do-
main size in the limitJ@T far from equilibrium grows as
t1/3 @17#. The difference between these models lies in the
probabilityq( l ) that a spin, having split off from a domain,
will reach the next domain wall a distancel away before
returning to its original position. For the limit of very strong
bias, studied in the present paper, we haveq( l )51, whereas
for the unbiased case we haveq( l )51/l @18#. SinceO( l 2)
such processes are necessary for a domain to vanish, the
typical lifetime of a domain isl 2 and l 3 for the strongly
biased and unbiased cases, respectively, leading to the
growth lawsL;t1/2 and L;t1/3. How does the system be-
have for intermediate values of the driving force? If we have
a small bias giving an average drift velocityv towards the
far wall, then asl divergesq( l ) will saturate to some small
but finite value. It is possible to find an explicit form for
q( l ) in the continuum limit by generalizing the approach of
Cordery, Sarkar, and Tobochnik@18# to the case of biased
diffusion @19#. For brevity, we shall instead use the following
scaling argument: in the timet; l 2 for the spin to have dif-
fused a lengthl , the bias gives rise to a driftvt;v l 2. This
drift is of order l whenv l5O(1), so thescaling form con-
sistent with q→ l21 as v l→0 is q( l )5 l21f (v l ), with
f (0)5 const. Forq independent ofl asl→`, we must have
f (x);x asx→`, soq( l );v asv l→`. In the limits where
vL is either large or small, we can translate this into a
growth law by writing

1

t
;
q~L !

L2
;H L23 for vL!1

vL22 for vL@1.
~39!

We conclude, therefore, that any finite bias eventually gives
rise to at1/2 growth law ast→`—provided, of course, that

FIG. 7. Effective exponent for the persistence probability of
minority spins.

54 1159DOMAIN GROWTH IN A ONE-DIMENSIONAL DRIVEN . . .



J/T@E/T, so that the system does not saturate to equilib-
rium before this growth law appears. For weak bias,
v5E/T, the two growth regimes are

L;H t1/3 for L!T/E

~Et/T!1/2 for L@T/E.
~40!

@It should be remembered thatt is measured in units of
exp(4J2E)/T#. Similar arguments have been used by Cadilhe
and Privman@20# in relation to the dynamic critical behavior
in this type of system.

It is tempting to propose an experimental setup that might
be described by the present one-dimensional model. If two
immiscible fluids of differing density are stirred and placed
in a vertical tube, then they will typically be able to slide past
each other and separate hydrodynamically. However, if the
tube is sufficiently narrow then it is possible for a state where
the denser fluid is above the lighter fluid to be metastable;
the loss in gravitational potential energy if the interface is
tilted slightly can be stabilized by the increase in interfacial
energy as the area of the interface increases. A state consist-
ing of alternating quasi-one-dimensional ‘‘domains’’ can

therefore be metastable. There now arises the question of
adding a noise source to create droplets at the surface. Sim-
ply shaking the tube will tend to induce tilting of the inter-
face, which will lead to hydrodynamic instability. The driv-
ing vibrations therefore have to be of a wavelength much
smaller than the width of the tube in order to create droplets
without exciting the ‘‘sloshing’’ mode. We leave the prob-
lems of finding an ultrasonic source of high enough intensity,
and of preparing the intial condition, as challenges for the
keen experimenter.

In a separate paper@21# we will present results for the
T50 dynamics of a deterministic 1D scalar field model, de-
fined by the modified Cahn-Hilliard equation] tf
52]x

2(]x
2f1f2f3)1Ef]xf. In the small-E limit, the

coarsening dynamics of this driven diffusive model also ex-
hibit a scaling distribution for domain sizes, and at1/2 growth
of the mean domain size. Both models, the stochastic Ising
model considered here and the deterministic model, are of
great interest in higher dimensions. The approach of looking
at the limit of small volume fractionm, which proved so
successful here, may well be fruitful in elucidating the be-
havior of these models in general dimensionD.
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